skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ellen, Jeffrey_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We assess whether a supervised machine learning algorithm, specifically a convolutional neural network (CNN), achieves higher accuracy on planktonic image classification when including non‐plankton and ancillary plankton during the training procedure. We focus on the case of optimizing the CNN for a single planktonic image source, while considering ancillary images to be plankton images from other instruments. We conducted two sets of experiments with three different types of plankton images (from aZooglider, Underwater Vision Profiler 5, and Zooscan), and our results held across all three image types. First, we considered whether single‐stage transfer learning using non‐plankton images was beneficial. For this assessment, we used ImageNet images and the 2015 ImageNet contest‐winning model, ResNet‐152. We found increased accuracy using a ResNet‐152 model pretrained on ImageNet, provided the entire network was retrained rather than retraining only the fully connected layers. Next, we combined all three plankton image types into a single dataset with 3.3 million images (despite their differences in contrast, resolution, and pixel pitch) and conducted a multistage transfer learning assessment. We executed a transfer learning stage from ImageNet to the merged ancillary plankton dataset, then a second transfer learning stage from that merged plankton model to a single instrument dataset. We found that multistage transfer learning resulted in additional accuracy gains. These results should have generality for other image classification tasks. 
    more » « less
  2. Abstract Plankton imaging systems supported by automated classification and analysis have improved ecologists' ability to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a suite of lab‐based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales. But these data have potential well beyond examining the abundances of different taxa; the individual images themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured from image data, suggest machine learning and computer vision approaches to extract functional trait information from the images, and discuss promising avenues for novel studies. The approaches we discuss are data agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms. 
    more » « less